

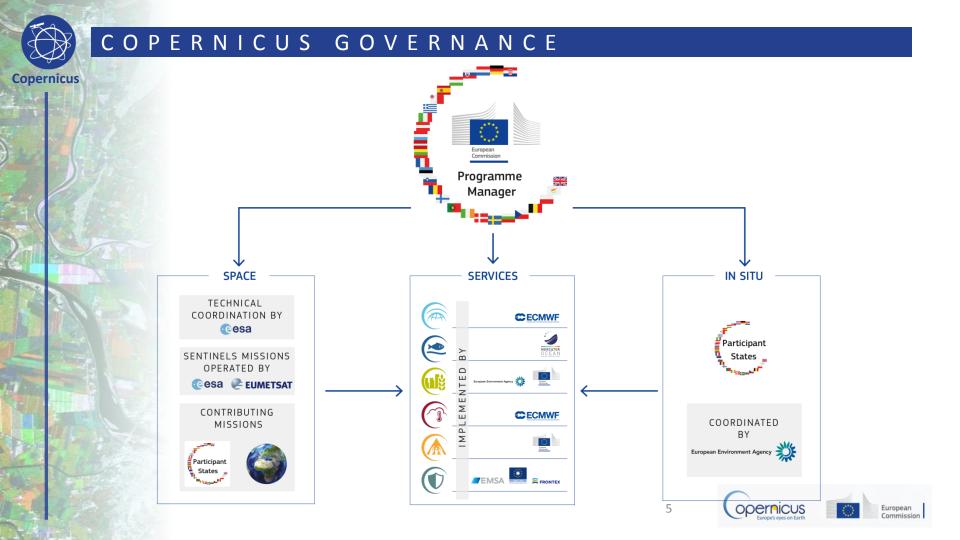
COPERNICUS IN BRIEF

- Copernicus is a flagship programme of the European Union:
 - Monitors the Earth, its environment and ecosystems
 - Prepares for crises, security risks and natural or man-made disasters
 - Contributes to the EU's role as a global soft power
- a full, free and open data policy
- Is a tool for economic development and a driver for the digital economy

COPERNICUS HISTORY

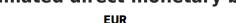
COPERNICUS FUNDING

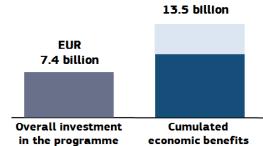
From research to operations



€1.3Bn

€4.3Bn





COPERNICUS MONETARY BENEFITS

Estimated direct monetary benefits between 2008 and 2020

Downstream and end users*

Upstream and Copernicus Services

EUR 3.1 billion

EUR 10.3 billion

12.450 iob years supported in the downstream and end user markets

15,580 jobs years supported in the upstream

Examples of existing Copernicus benefits

70% Cost reduction of a precision farming service in Austria. thanks to Copernicus

€ 60k Yearly savings for each construction company using a work progress monitoring app

60%

Higher accuracy for analysis of the impact of trans-boundaries pollutants on air quality

5%

Productivity gain for fish farmers, by monitoring toxic algal blooms

50%

Copernicus-based forecasts generate 50% more benefits to solar energy producers than traditional forecasts

€ 186M

Benefits of Copernicus on the insurance market in 2015

^{*} The Downstream and end user analysis includes only 8 value chains: Agriculture, Forestry, Urban Monitoring, Insurance, Ocean Monitoring, Oil & Gas, Renewable Energies and Air Quality. Estimates for end users were only calculated for Insurance, Oil&Gas and Urban Monitoring. The estimates of downstream and end user benefits should be seen as extremely conservative because they were calculated a year after the launch of the first Sentinel satellite. Benefits are likely to increase significantly as more

COPERNICUS BROADER BENEFITS

Climate change & Environment Development & Cooperation Security & Defence Tourism Health **Insurance & Disaster management** Blue economy **Urban planning... Energy & Natural resources** Forestry...

EXAMPLE OF COPERNICUS BENEFITS

Pipeline Infrastructure Monitoring in the Netherlands

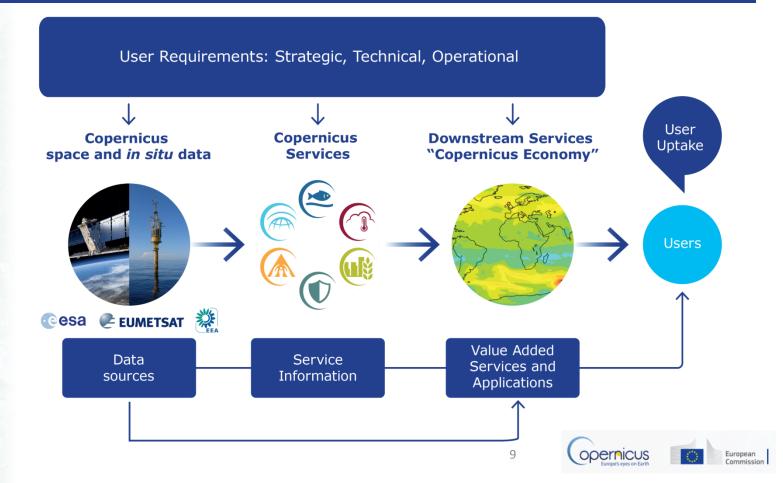
Benefits for the Netherlands: €15 to €18 M/year

Forest Management in Sweden

Benefits for Sweden: €16 to €22 M/year

Winter Navigation in the Baltic

Benefits for Sweden and Finland: €24 to €106 M/year



COPERNICUS IS DRIVEN BY THE USERS

THE SENTINELS

Key Features AND OPEN

Space Component

Sentinel Mission and Status

S1-A and B in orbit

SENTINEL-2:

10-60m resolution, 5 days revisit time

S2-A in Orbit S2-B in Orbit

SENTINEL-3:

300-1200m resolution, <2 days revisit

S3-A in Orbit S3-B Launch

Q4 2017

SENTINEL-4:

8km resolution, 60 min revisit time

1st Launch Q4 2022

SENTINEL-5p:

7-68km resolution, 1 day revisit

Launch in Q2 2017

SENTINEL-5:

7.5-50km resolution, 1 day revisit

1st Launch in 2021

SENTINEL-6:

10 days revisit time

July 2020

Polar-orbiting, all-weather, day-and-night radar imaging

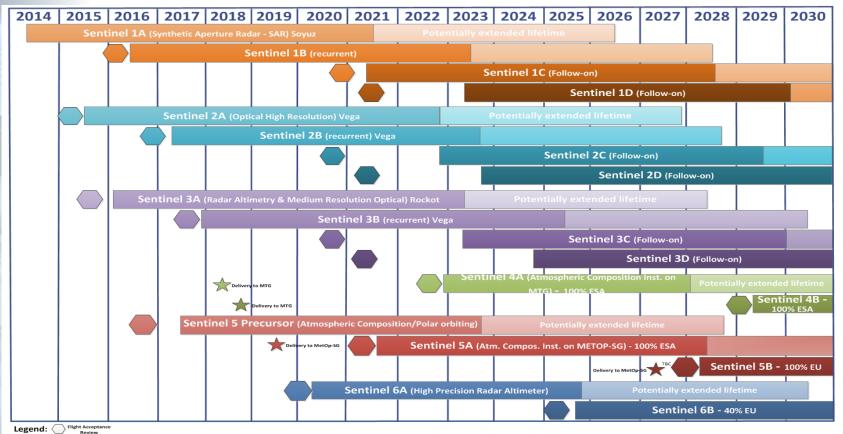
Polar-orbiting, multispectral optical, high-res imaging

Optical and altimeter mission monitoring sea and land parameters

Payload for atmosphere chemistry monitoring on MTG-S

Mission to reduce data gaps between Envisat, and S-5

Payload for atmosphere chemistry monitoring on MetOp 2ndGen


Radar altimeter to measure seasurface height globally

SENTINEL FAMILY DEPLOYMENT SCHEDULE

Space Component

SENTINEL-1

Space Component

Key Features:

- SAR sensor All-weather, day-and-night
- 9-40m resolution, 6 days revisit time at equator
- 2 launched on 3/4/2014 and 25/4/2016, 2 ordered

Contributes to:

Copernicus Land Monitoring Service

Copernicus Marine Environment Service

Copernicus Emergency Management Service

Copernicus Climate Change Service

Copernicus Security Service

SENTINEL-2

Space Component

Key Features:

- Multispectral optical sensor
- 10-60m resolution, 5 days revisit time
- First unit launched on 22/6/2015
- Second launched on 7/03/2017
- 2 more units are ordered

Contributes to:

Copernicus Land Monitoring Service

Copernicus Emergency Management Service

Copernicus Climate Change Service

Copernicus Security Service

SENTINEL-3

Space Component

Key Features:

- Medium resolution imaging and altimetry
- 300-1200m resolution, <2 days revisit time
- Monitors Sea and Land Surface Parameters
- First unit launched on 16/2/2016
- Second unit to be launched in Q4 2017
- 2 more units ordered

Contributes to:

Copernicus Land Monitoring Service

Copernicus Marine Environment Service

Space Component

Key Features:

- Onboard MTG-S
- Atmospheric Chemistry Mission
- 8km resolution, 60 min revisit time
- To be launched in 2022

Contributes to:

Copernicus Atmosphere Service

SENTINEL-5p

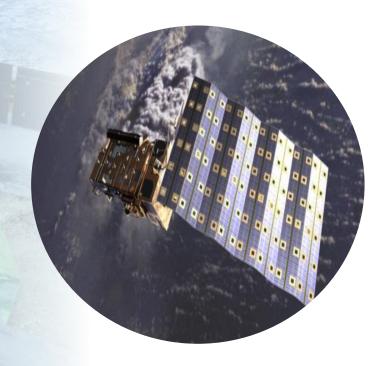
Space Component

Key Features:

- Precursor of Sentinel-5
- Atmospheric Chemistry Mission
- 7-68km resolution, 1 day revisit time
- To be launched by mid-2017

Contributes to:

Copernicus Atmosphere Service



Space Component

Key Features:

- Onboard MetOp 2nd Gen
- **Atmospheric Chemistry Mission**
- 7-50km resolution, 1 day revisit time
- To be launched in 2021

Contributes to:

Copernicus Atmosphere Service

Space Component

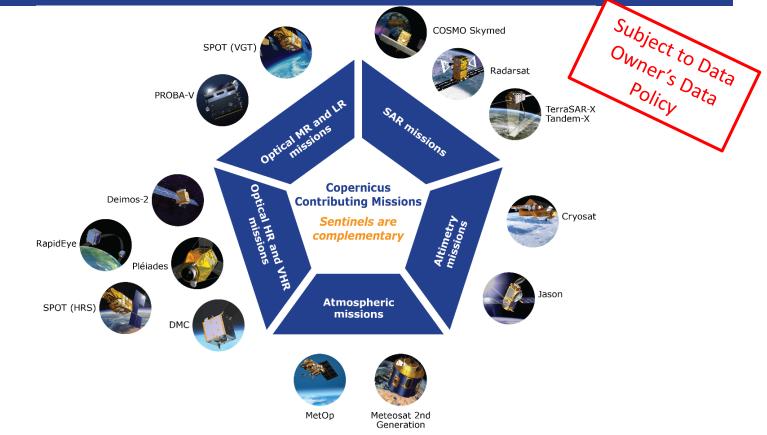
Key Features:

- Radar Altimeter
- Measures sea-surface height
- 10 days revisit time
- To be launched in 2020

Contributes to:

Copernicus Marine Environment Service

Copernicus Atmosphere Service



THE CONTRIBUTING MISSIONS

Space Component

IN-SITU: OVERVIEW

- In situ data = observation data from ground-, sea-, or air-borne sensors, reference and ancillary data licensed for use in Copernicus
- Use of *In situ* data:
 - Validate & calibrate Copernicus products
 - Reliable information services
- Implementation in two tiers:
 - Tailored in situ data for each Copernicus service level
 - Cross-cutting coordination across services by the EEA

COPERNICUS SERVICES

SERVICES IMPLEMENTATION SCHEDULE Copernicus 2014 2015 2016 2017 2018 2019 2020 MERCATOR OCEAN Marine Environm. Monitoring Phase I Phase II Atmosphere Monitoring Phase I Climate Change - Phase I Phase III Phase II Security - Border Surveillance Security - Maritime Surveillance Security - Support to External Action In-Situ Coordination Delegation agreement \(\square{\text{Direct Management}} \) Operationnal phase

22

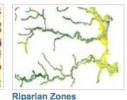
Natural Resources

Water

Global

Pan-European

Reference Data



Related Pan-European products

Local

Marine Monitoring

Marine safety

Marine resources

Coastal and marine environment

Climate and meteorological forecasting

Other: Transport,
Tourism,
Environment,
Pollution, Energy, etc.

Sea Level

Ocean Salinity

Ocean Temperature

Sea Ice

Wind

Ocean Currents

Ocean Colour / Biogeochemistry (e.g. optics, chlorophyil, biology, chemistry)

Atmosphere Monitoring

Health

Environment

Pollution

Climate

Renewable Energy

Air Quality and Atmospheric Composition

Climate forcing

Ozone layer & UV

Solar radiation

Emissions and surface fluxes

Climate change

Mitigation and adaptation

Weather forecast

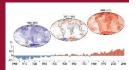
Pollution

Environment

Health

Consistent Estimates of the Essential Climate Variables (ECVs)

Support to Mitigation and Adaptation Strategies


Global and Regional Reanalyses

Seasonal Forecasts And Climate Projections

Emergency Management

> Disaster Emergency Situations

Humanitarian Crises

Risk & Recovery Mapping:

- Reference Maps
- Pre-disaster Situation Maps
- Post-disaster Situation Maps

Rapid Mapping:

- Reference Maps
- Delineation Maps
- Grading Maps

Early Warning:

Floods: EFAS

Forest Fires: EFFIS

EFAS = European Flood Awareness System; EFFIS=European Forest Fire Information System

Security

Benefit areas and products examples

Border Surveillance

Maritime Surveillance

Support to EU External Action

- Coastal monitoring
- Pre-frontier monitoring
- Reference mapping

- Maritime surveillance of an area of interest
- Vessel detection
- Vessel tracking and reporting
- Vessel anomaly detection

- Road network status assessment
- Conflict damage assessment
- Critical infrastructure analysis
- Reference map
- Support to evacuation plans
- Crisis situation map
- Border map
- Camp analysis

Agriculture sector: Examples of benefits

More affordable applications based on Free Sentinels

1 and 2 Data and the Land Service Products

- Precision farming applications such as yield mapping, input management, farm management recording, etc.
- Seasonal mappings of cultivated areas
- Field scale and crop dynamics mapping
- Irrigation management and drought monitoring
- Food security monitoring
- Agriculture development in Africa

Better quality food production

More efficient and appropriate use of fertilizers

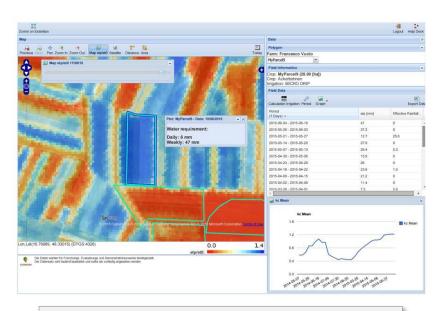
€ Expected Copernicus enabled revenues

Uptake

Agriculture application case study

Improving irrigation management in Austria with Copernicus

Irrigation cost for one year: 8 M€ to 20 M€


Improvements through optimisation of the amount of water requirements + optimisation of the distribution of individual irrigation events.

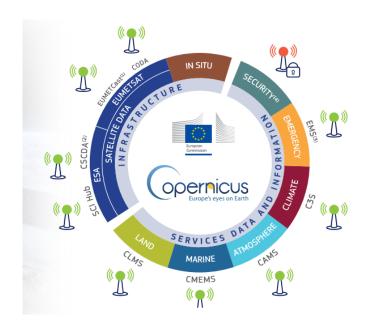
Products delivered:

- · crop development maps
- evapotranspiration maps
- weather data and forecast

23% reduction of the total service cost enabled by Sentinel data (compared to commercial satellites)

Extract of the webGIS information used to deliver the information to farmers

(Source: Institute of Surveying, Remote Sensing and Land Information)



Copernicus Data Access Overview

- Satellite Data distribution Hubs
 - Sentinels
 - Contributing missions
 - Access to images in NRT
 - Access to archives

- Services Information portals for
 - Added value products, indicators
 - Models
 - Archives, Near Real Time and Forecasts products



Uptake

COPERNICUS DATA ACCESS: KEY LINKS

Access to Satellite data

Data Access Portal* CSC-DA

https://spacedata.copernicus.eu/

FULL, FREE AND OPEN

- Copernicus OnlineData Access (CODA)
- EUMETCast:

www.eumetcast.com

Needs to get a station and pay a yearly fee

Access to Copernicus Services Data

- Land-related data: http://land.copernicus.eu
- Atmosphere-related data: http://atmosphere.copernicus.eu
- Marine-related data: http://marine.copernicus.eu
- Emergency-related data: http://emergency.copernicus.eu
- Climate change-related data: http://climate.copernicus.eu (Beta version)

<u>THE BI</u>G DATA CHALLENGE

- Massive amounts of data
- Full, open and free-of-charge

011000 011001 010001 00101

Over 10 Petabyte/year
of new data
with just Sentinels-1, -2
and -3 fully operational
(data are downloaded
many time over)

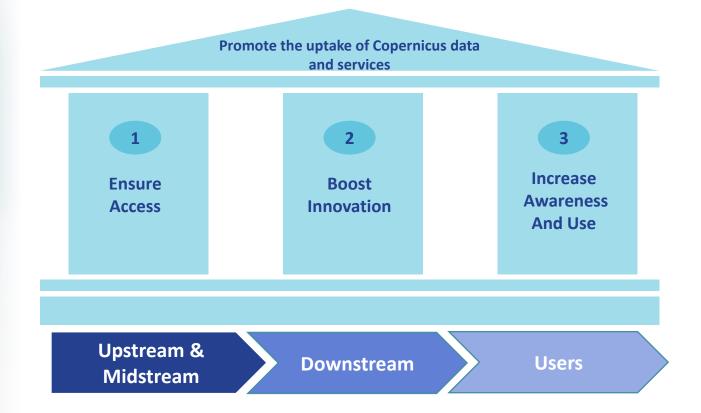
- Different types of dissemination infrastructures
- New technology developments
- ICT and EO cross-fertilisation
- Interoperability with non-EO datasets
- Global EO competition
- Growth and jobs in downstream sector

COPERNICUS BIG DATA APPROACH

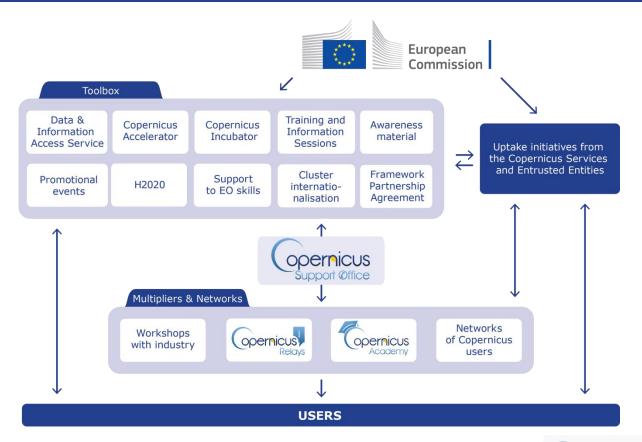
Dual approach:

- Strong Copernicus Distribution Services for download
- Imminent launch of several Data Access and Information Services (DIAS)
 - Access to all Copernicus data and information collocated with computing resources
 - Big Data analytics without the need to download the data and information
 - Data fusion with non-EO data and information

Overall ensuring that Copernicus data is easily accessible and used!



Uptake


COPERNICUS USER UPTAKE STRATEGY

Uptake

COPERNICUS USER UPTAKE INITIATIVES

COPERNICUS IN ACTION

https://www.youtube.com/watch?v=MGJss4IDaBo

CONCLUSIONS

Increase general knowledge on the state of the Planet

Protect people and assets

The Union Earth Observation and monitoring programme

> Monitor the environment

Improve environmental policy effectiveness

> Facilitate adaptation to climate change

Foster downstream applications in a number of fields

Help managing emergency and security related situations

